Vascular Protection
The Endothelial Cell Research Series
A series of significant reviews of basic and clinical research related to the endothelium.

Edited by Gabor M. Rubanyi, Berlex Biosciences, Richmond, California.

Volume One
Endothelium-Derived Hyperpolarizing Factor
edited by Paul M. Vanhoutte

Volume Two
Endothelial Modulation of Cardiac Function
edited by Malcolm J. Lewis and Ajay M. Shah

Volume Three
Estrogen and the Vessel Wall
edited by Gabor M. Rubanyi and Raymond Kauffman

Volume Four
Modern Visualisation of the Endothelium
edited by Julia M. Polak

Volume Five
Pathophysiology and Clinical Applications of Nitric Oxide
edited by Gabor M. Rubanyi

Volume Six
Mechanical Forces and the Endothelium
edited by Peter Lelkes

Volume Seven
Vascular Endothelium in Human Physiology and Pathophysiology
edited by Patrick J. Vallance and David J. Webb

Volume Eight
Morphogenesis of Endothelium
edited by Werner Risau and Gabor M. Rubanyi

Volume Nine
Vascular Protection: Molecular Mechanisms, Novel Therapeutic Principles and Clinical Application
edited by Gabor M. Rubanyi, Victor J. Dzau and John P. Cooke

This book is part of a series. The publisher will accept continuation orders which may be cancelled at any time and which provide for automatic billing and shipping of each title in the series upon publication. Please write for details.
Vascular Protection

Molecular Mechanisms, Novel Therapeutic Principles and Clinical Application

Edited by

Gabor M. Rubanyi
Berlex Biosciences
Richmond, California
USA

Victor J. Dzau
Department of Medicine
Brigham & Women’s Hospital
Boston, USA
and

John P. Cooke
Section of Vascular Medicine
Stanford University
USA

London and New York
CONTENTS

Preface

Preface

Contributors

Contributors

I Endothelium-Derived Vasoactive Factors/Endothelial Dysfunction

1 “Nitric Oxide Deficiency” in Cardiovascular Diseases: cardiovascular protection by restoration of endothelial nitric oxide production

Katalin Kauser

and Gabor M. Rubanyi

2 Sickle Erythrocyte Interaction with Endothelial Cells Causes Endothelial Dysfunction

Vijay K. Kalra

and Cage S. Johnson

3 Uncoupling of Endothelial Nitric Oxide Synthase: a molecular basis for atherosclerosis

Erik S.G. Stroes,

Ton J. Rabelink

and Ernst E. van Faassen

4 Endothelin Receptor Changes Following Angioplasty of Porcine Coronary Arteries: effect of the endothelin-A receptor antagonist, LU 135252

Michael R. Dashwood,

Klaus Muenter

and Michael Kirchengast

5 A Potential Role for Endothelin-1 in Peripheral Vascular Disease

Michael R. Dashwood,

Anita Jagroop,

Amarjit S. Atwal,

Diana Gorog

and Peder J. Bagger

6 Endurance Exercise Preserves Endothelium Dependent Arterial Dynamics in the Elderly

Sreekanthan Sundararaghavan,

Alexander J. Muster

and David D. McPherson

7 Effect of AT_{1} Receptor Antagonists on Endothelial Function

Jenő Tarján
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Intracellular Signaling in Vascular Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NO Signalling in Blood Vessels</td>
<td>Jean-Claude Stoclet, Bernard Muller, Marie-Elisabeth Stoeckel, Andrei L. Kleschyov</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>Ca$^{2+}$-Independent Nitroc Oxide Synthase Activation in Endothelial Cells</td>
<td>Ingrid Fleming, Rudi Busse</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>Adhesion Molecules in Diabetic Vasculopathy</td>
<td>Jean-Luc Wautier, Marie-Paul Wautier</td>
<td>131</td>
</tr>
<tr>
<td>12</td>
<td>Regulation of NK-kB in Vascular Smooth Muscle Cells</td>
<td>Ginette S. Hoare, Nandor Marcin, Adrian H. Chester, Magdi H. Yacoub</td>
<td>137</td>
</tr>
<tr>
<td>13</td>
<td>Flow-Mediated Activation of MAP Kinases</td>
<td>James Surapisitchat, Chen Yan, Bradford C. Berk</td>
<td>153</td>
</tr>
<tr>
<td>III</td>
<td>Apoptosis and Vascular Remodeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>The Role of Intimal Cells in Atherosclerosis</td>
<td>Stephen M. Schwartz, Renu Virmani, Michael E. Rosenfeld</td>
<td>161</td>
</tr>
<tr>
<td>15</td>
<td>Macrophage Resistance to Apoptosis in Vascular Diseases</td>
<td>Thomas McCormick, Eduardo G. Lapetina</td>
<td>180</td>
</tr>
<tr>
<td>16</td>
<td>Cytokines in Endothelial Cell Survival and Apoptosis: a role for protein kinases and caspases</td>
<td>Peter R. Young, Giora Z. Feuerstein</td>
<td>190</td>
</tr>
<tr>
<td>17</td>
<td>Altered Mitotic Checkpoint in Rats Predisposed to Hypertension</td>
<td></td>
<td>205</td>
</tr>
</tbody>
</table>
Mary L. Hixon,
Carlos Muro-Cacho,
Carlos Obejero-Paz
and Antonio Gualberto

18 Innervation of the Pig Vein Graft: a potential role for vascular nerves on graft occlusion
Jamie Y. Jeremy
and Michael R. Dashwood

IV Sex Hormones and Vascular Protection

19 Estrogen Receptor Knockout Mice: molecular and endocrine phenotypes
Sylvia Curtis Hewitt,
John F. Cause
and Kenneth S. Korach

20 The Potential Role of Estrogen Receptor Alpha (ER α) in Cardiovascular Protection
Gabor M. Rubanyi
and Katalin Kauser

21 Differential Effects of Estrogen on the Initiation and Progression of Atherosclerotic Lesions in Hypercholesterolemic Animal Models
Michael E. Rosenfeld,
Katalin Kauser,
Baby Martin-McNulty,
Patti Polinsky,
Lauren Nathan,
Gautum Chaudhuri,
Stephen M. Schwartz
and Gabor M. Rubanyi

22 Protective Effects of Estrogen on Global Myocardial Ischemia-Reperfusion Injury in Males and Females
David R. Gross
and Peiyong Zhai

23 The Estrogen in Women with Atherosclerosis Study: effects of hormone-replacement therapy on plasma concentrations of Lp(a) lipoprotein and TGF-β1
Srdjan Djurovic,
Ingrid Os,
Arne estheim
and Kåre Berg

V Atherosclerosis

24 Dual Role for Angiotensin Converting Enzyme- and Chymase Angiotensin II Generation in Human Vascular Tissues
Julie A. A. Borland,
Adrian H. Chester
25 Insulin and Plasminogen Activator Inhibitor-1 in Atherogenesis: evidence for a relationship in dyslipidaemia and hypertension
Abayomi O.Akanji

26 Antiatherothrombotic Actions of Statins are Mediated by the Arterial Wall
H.Kritz, Barbara Palumbo
and Helmut Sinzinger

VI Thrombosis/Thrombolysis
27 Platelet Glycoproteins and Thrombosis: from bedside to the bench and back to the bedside
Sylvia Bellucci
and J.P.Caen

28 Alterations in Hemostatic Gene Expression in Obesity
David J.Loskutoff

29 Characterization of Platelets in Patients with Inherited Large Platelet Syndrome
Einar S.Breimo,
Raafat El-Gewely
and Bjarne Osterud

30 Are there Differences Between Central and Peripheral Indices of Haemostasis in Patients with Atrial Fibrillation?
Gregory Y.H.Lip
and Foo Leong Li-Saw-Hee

VII Clinical Medicine: Novel Targets and Therapies
31 Gene Therapy for Cardiovascular Diseases: an overview
Afshin Ehsan
and Michael J.Mann

32 Therapeutic Angiogenesis and Nitric Oxide
John P.Cooke
and Christopher Heeschen

33 A Novel Nutritional Therapy for Peripheral Arterial Disease
Andrew J.Maxwell,
John P.Cooke,
Barbara Anderson,
Michael P.Zapien
and Hector Ramos

34 New Insights into the Cellular Basis of Coronary Artery Disease Mechanisms of Plaque Instability and Coronary Events: potential targets for therapy
Peter L.Weissberg
Future Treatment Approaches to Vascular Diseases: Potential Applications of Endothelial Precursor Cells and Microarray Technology

Daniel P. Griese, Afshin Ehsan and Victor J. Dzau
Our knowledge of vascular biology has expanded dramatically in the last decade. Recognizing the increasing complexity and multidisciplinary nature of this field has prompted us to create this book, which integrates several new aspects of research—from basic sciences to clinical application so as to provide a comprehensive overview of the most recent progress in this field. This book is based, in part, on the material presented during “The International Symposium on Vascular Protection: From Basic Sciences to the Clinic” which was held in Los Angeles, California in December 1998.

The chapters, written by leading experts of their respective field, collectively emphasize the mechanisms and pathologic consequences of vascular disorders, highlighting the clinical ramifications of these insights and the potential for new therapeutic strategies.

Vascular protection is an ideal theme for exploring advances in vascular biology and how they translate into innovations in drug therapy for vascular disease. The broad spectrum of scientific subjects covered includes recent progress in basic knowledge about endothelial vasoactive factors (eg, nitric oxide) and other biologically active molecules (eg, growth factors, cytokines, coagulation and fibrinolytic factors, and adhesion and chemoattractant molecules), endothelial cell activation/dysfunction, atherosclerosis, thrombosis and fibrinolysis, free radicals, interventional technology, and gene therapy. Based on breakthroughs and worldwide awareness in recent years the book also covers novel themes such as the role of apoptosis and sex steroids in vascular biology.

The editors believe that this book, which is the first of its kind, provides critical new information of interest to researchers and clinicians, as well as to industrial scientists in pursuit of novel therapies of cardiovascular disorders.

The Editors would like to express their gratitude to the authors for their excellent contribution to this book and to the staff of Harwood Academic Publishers for their professional and efficient publication of this book.
LIST OF CONTRIBUTORS

Akanji, Abayomi O. Dept. of Clinical Pathology Faculty of Medicine Kuwait University P.O. Box 24923 Safat 13110 Kuwait

Anderson, Barbara Division of Research and Development Cooke Pharma, Inc. Belmont Canada

Atwal, Amarjit S. Department of Surgery Royal Free Hospital Pond Street London NW3 2QE UK

Bagger, Peder Department of Cardiology Imperial College School of Medicine Hammersmith Hospital London UK

Bellucci, Sylvia Hematology Laboratory Lariboisière Hospital 2 rue Ambroise Paré 75010 Paris France

Berg, Kåre Institute of Medical Genetics P.O. Box 1036—Blindern 0315 Oslo Norway

Berk, Bradford C. University of Rochester School of Medicine and Dentistry Centre for Cardiovascular Research 601 Elmwood Avenue, Box 679 Rochester New York 14642 USA

Borland, Julie A.A. Department of Cardiothoracic Surgery National Heart and Lung Institute Heart Science Centre Harefield Hospital Harefield, Middlesex UB9 6JH UK

Breimo, Einar S.

Busse, Rudi Institut für Kardiovaskuläre Physiologie Klinikum der J.W.Goethe-Universität Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany

Caen, J.P. Institut des Vaisseaux et du Sang Lariboisière Hospital 8 rue Guy Patin 75475 Paris Cedex 10 France

Chaudhuri, Gautum University of California at Los Angeles School of Medicine Department of Obstetrics and Gynecology 10833 LeConte Ave. Los Angeles CA 90095–1740 USA

Chester, Adrian Department of Cardiothoracic Surgery National Heart and Lung Institute Heart Science Centre Hill End Lane Harefield Hospital Middlesex, UB9 6JH UK
Cooke, John Department of Cardiovascular Medicine Stanford University School of Medicine 300 Pasteur Drive Stanford, CA 94305-5406 USA

Couse, John F. Receptor Biology, LRDT National Institute of Environmental Health Services National Institute of Health Research Triangle Park NC 27709 USA

Dashwood, Michael R. Royal Free Hospital and University College Medical School Molecular Pathology and Clinical Biochemistry Royal Free Campus Pond Street London NW3 2QG UK

Djurovic, Srdjan Department of Medical Genetics Ullevål University Hospital Kirkeveien 166 N-0407 Oslo Norway

Dzau, Victor J. Division of Cardiovascular Medicine Brigham & Women’s Hospital 75 Francis Street Boston MA 02115–6195 USA

Ehsan, Afshin Department of Medicine Brigham and Women’s Hospital 75 Francis Street Boston, MA 02115 USA

El-Gewely, Raafat Department of Biotechnology Institute of Medical Biology University of Tromsø Tromsø 9037 Norway

Feuerstein, Giora Z. Cardiovascular Diseases Research DuPont Pharmaceuticals Company Route 141 and Henry Clay Road Wilmington DE 19880–0400 USA

Fleming, Ingrid Institut für Kardiovaskuläre Physiologie Klinikum der J.W.Goethe-Universität Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany

Gorog, Diana Department of Cardiology Imperial College School of Medicine Hammersmith Hospital London UK

Gross, David R. Department of Veterinary Biosciences 3516 Veterinary Medicine Basic Sciences Building 2001 S.Lincoln Avenue Urbana, IL 61802 USA

Gualberto, Antonio Department of Cardiovascular and Metabolic Diseases Pfizer Inc. Central Research Division Eastern Point Rd Groton, CT 06340 USA

Heeschen, Christopher Falk Cardiovascular Research Center 300 Pasteur Drive Stanford, CA 94305-5406 USA

Hewitt, Sylvia C. Receptor Biology, LRDT National Institute of Environmental Health Services National Institute of Health Research Triangle Park NC 27709 USA

Hixon, Mary L. Department of Physiology & Biophysics and Ireland Cancer Center CWRU School of Medicine Cleveland, OH 44106 USA

Hoare, Ginette S. Dept. of Cardiothoracic Surgery National Heart and Lung Institute Heart Science Centre Hill End Lane, Harefield Hospital Middlesex, UB9 6JH UK

Jagroop, Anita Royal Free Hospital and University College Medical School Molecular Pathology and Clinical Biochemistry Royal Free Campus Pond Street London NW3 2QG UK

Jeremy, Jamie Y. Bristol Heart Institute University of Bristol Bristol Royal Infirmary Bristol, BS2 8HW UK
Johnson, Cage S. Department of Medicine Keck School of Medicine University of Southern California Los Angeles, CA USA

Kalra, Vijay K. Department of Biochemistry and Molecular Biology University of Southern California 2011 Zonal Avenue HMR 611 Los Angeles, CA 90089 USA

Kauser, Katalin Cardiovascular Department Berlex Biosciences 15049 San Pablo Avenue P.O. Box 4099 Richmond CA 94804–0099 USA

Kirchengast, Michael Knoll AG P.O. Box 610805 67008 Ludwigshafen Germany

Kleschyov, Andrei L. Faculty of Pharmacy UMR CNRS 7034 Université Louis Pasteur de Strasbourg BP24, 74 route du Rhin 67401 Illkirch Cedex France

Korach, Kenneth S. Receptor Biology, LRDT National Institute of Environmental Health Services National Institute of Health Research Triangle Park NC 27709 USA

Kritz, H. Wihelm Auerswald Atherosclerosis Research Group Nadlergasse 1 A-1090 Vienna Austria

Lapetina, Eduardo G. Molecular Cardiovascular Research Center Case Western Reserve University School of Medicine and the University Hospitals of Cleveland 10900 Euclid Avenue Cleveland, OH 44106-4958 USA

Lip, Gregory Y.H. Haemostasis, Thrombosis and Vascular Biology Unit University Department of Medicine City Hospital, Dudley Road Birmingham B18 7QH UK

Li-Saw-Hee, Foo Leong Haemostasis, Thrombosis and Vascular Biology Unit University Department of Medicine City Hospital, Dudley Road Birmingham B18 7QH UK

Loskutoff, David J. Department of Vascular Biology The Scripps Research Institute 10550 North Torrey Pines Rd., VB-3 La Jolla CA 92307–1092 USA

Mann, Michael Department of Medicine Harvard Medical School and Brigham and Women’s Hospital 75 Francis Street Thorn 13 Boston MA 02115 USA

Marczin, Nandor Department of Cardiothoracic Surgery National Heart and Lung Institute Heart Science Centre Hill End Lane Harefield Hospital Middlesex UB9 6JH UK

Martin-McNulty, Baby Departments of Cardiovascular Research and Pharmacology Berlex Biosciences 15049 San Pablo Avenue P.O. Box 4099 Richmond CA 94804–0099 USA

Maxwell, Andrew J. Cooke Pharma, Inc. 1404 Old County Road Belmont, CA 94002 USA

McCormick, Thomas Molecular Cardiovascular Research Center Case Western Reserve University School of Medicine and the University Hospitals of Cleveland 10900 Euclid Avenue Cleveland, OH 44106-4958 USA

McPherson, David Northwestern University Medical School Section of Cardiology 675 North St. Clair Street Galter Pavilion—Suite 8–230 Chicago IL 60611–2923 USA

Muenter, Klaus Knoll AG P.O. Box 610805 67008 Ludwigshafen Germany

Muller, Bernard Faculty of Pharmacy UMR CNRS 7034 Université Louis Pasteur de Strasbourg BP24, 74 route du Rhin 67401 Illkirch Cedex France
Muro-Cacho, Carlos Department of Pathology H.L.Moffitt Cancer Center and Research Institute USF, Tampa FL 33647 USA

Muster, Alexander J. Department of Paediatrics Childrens Memorial Hospital 2300 Children’s Plaza P.O. Box 18 Chicago IL 60611 USA

Nathan, Lauren University of California at Los Angeles School of Medicine Department of Obstetrics and Gynecology 10833 LeConte Ave. Los Angeles CA 90095–1740 USA

Carlos Obejero-Paz Department of Physiology & Biophysics and Ireland Cancer Center CWRU School of Medicine Cleveland OH 44106 USA

Os, Ingrid Department of Medicine Ullevål University Hospital Kirkevein 166 N-0407 0510 Norway

Østerud, Bjarne Department of Biochemistry Institute of Medical Biology University of Tromsø Tromsø 9037 Norway

Palumbo, Barbara Institute of Nuclear Medicine University of Perugia Italy

Polinsky, Patti Department of Pathology Box 357335 University of Washington Seattle, WA 98195-7335 USA

Rabelink, Ton J. Department of Vascular Medicine University Medical Centre Heidelberglaan 100 3584 CX Utrecht The Netherlands

Ramos, Hector Division of Research and Development Cooke Pharma, Inc. Belmont Canada

Rosenfeld, Michael E. Department of Pathology and Pathobiology University of Washington 324D Raitt Hall, Box 353410 Seattle, WA 98195-7335 USA

Rubanyi, Gabor M. Cardiovascular Department Berlex Biosciences 15049 San Pablo Avenue P.O. Box 4099 Richmond CA 94804–0099 USA

Schwartz, Stephen M. I-420 Health Sciences Center Department of Pathology, Box 357335 University of Washington Seattle, WA 98195-7335 USA

Sinzinger, Helmut Wilhelm Auerswald Atherosclerosis Research Group Nadlergasse 1 A-1090 Vienna Austria

de Souza, Domingos S.R. Örebro Medical Centre Hospital Department of Thoracic and Cardiovascular Surgery SE-701 85 Örebro Sweden

Stoclet, Jean-Claude Faculty of Pharmacy UMR CNRS 7034 Université Louis Pasteur de Strasbourg BP24, 74 route du Rhin F-67401 Illkirch Cedex France

Stoeckel, Marie-Elisabeth Institute of Physiology and Biological Chemistry UMR CNRS 7519 Université Louis Pasteur de Strasbourg BP24, 74 route du Rhin F-67401 Illkirch Cedex France

Stroes, Eric Department of Nephrology F O3.226 University Hospital Utrecht Heidelberglaan 100 3584 CX Utrecht The Netherlands

Sundaraghavan, Sreekanthan Division of Cardiology Northwestern University Medical School 250 East Superior, Rm. 582 Chicago IL 60611 USA
Surapisitchat, James University of Rochester School of Medicine and Dentistry Centre of Cardiovascular Research 601 Elmwood Avenue, Box 679 Rochester NY 14642 USA

Tarján, Jenö 3rd Dept. of Medicine Markusovszky Hospital 3 Markusovszky Street Szombathely, H 9701 Hungary

van Faassen, Ernst E. Debye Institute University Utrecht Ornstein Laboratory Princetonnplein 1 3508 GA Utrecht The Netherlands

Virmani, Renu Department of Cardiovascular Pathology Armed Forces Institute of Pathology Washington, DC USA

Wautier, Jean-Luc National Institute of Blood Transfusion 6 rue Alexandre Cabanel 75739 Paris Cedex 15 France

Wautier, Marie-Paule Cellular and Vascular Biology Research Laboratory EA 1557 Paris 7 Lariboisière Hospital Paris France

Weissberg, Peter L. Division of Cardiovascular Medicine Addenbrooke’s Centre for Clinical Investigation Addenbrooke’s NHS Trust Hills Road Cambridge CB2 2QQ UK

Westheim, Arne Department of Medicine Ullevål University Hospital Kirkevein 166 N-0407 Oslo Norway

Yacoub Magdi H. Department of Cardiothoracic Surgery National Heart and Lung Institute Heart Science Centre Hill End Lane Harefield Hospital Middlesex, UB9 6JH UK

Yan, Chen University of Rochester School of Medicine and Dentistry Centre for Cardiovascular Research 601 Elmwood Avenue, Box 679 Rochester NY 14642 USA

Young, Peter R. Cardiovascular Diseases Research DuPont Pharmaceuticals Company Route 141 and Henry Clay Road Wilmington DE 19880–0400 USA

Zapien, Michael P. Division of Research and Development Cooke Pharma, Inc. Belmont Canada

Zhai, Peiyong Department of Veterinary Biosciences 3516 VMBS Building 2001 S.Lincoln Avenue Urbana IL 61801 USA
1. “Nitric Oxide Deficiency” in Cardiovascular Diseases: Cardiovascular Protection by Restoration of Endothelial Nitric Oxide Production

Katalin Kaufman and Gabor M. Rubanyi*

Cardiovascular Research and *Gene Therapy and Genomics Research, Berlex Biosciences, Richmond, CA

INTRODUCTION

Cardiovascular diseases are often associated with endothelial dysfunction represented by diminished endothelium-dependent vasodilation. Endothelium derived nitric oxide (NO), a vasodilator molecule produced by the intact endothelial layer of the vascular wall, plays a key role in the maintenance of vascular integrity by acting via multiple mechanisms of action. These include inhibition of platelet aggregation, prevention of leukocyte adhesion, attenuation of smooth muscle proliferation and inhibition of vasospasm. NO also reacts with oxygen free radicals and interferes with redox-sensitive transcription of pro-inflammatory molecules.

Impaired NO activity is an early symptom in cardiovascular diseases including atherosclerosis, systemic and pulmonary hypertension, heart failure, peripheral arterial occlusive disease as well as cardiovascular complications of diabetes. The apparent “NO-deficiency” is the net result of several different pathological processes interfering with NO availability and bioactivity in the vascular wall. These processes can decrease the amount of endothelial NO at different levels of its production.

Availability of endothelial NO can be regulated by the expression of its generating enzyme, nitric oxide synthase-III (NOS-III), as well as by the activity of the NOS-III enzyme, which is tightly controlled by cofactor and substrate availability, posttranslational modifications (myristoylation, palmitoylation and phosphorylation), protein-protein interactions (caveolin, Hsp90) and cellular localization. In addition, accumulation of endogenous NOS inhibitors and increased oxidative degradation of NO could also lead to diminished availability of endothelial NO.

The pathogenic link between decreased NO production and atherogenesis is demonstrated by experiments with hypercholesterolemic rabbits and apoE-deficient mice. These studies reported accelerated development and progression of atherosclerosis as a result of chronic pharmacological inhibition of NO synthesis.

Therapies with demonstrated efficacy in atherosclerotic diseases, such as 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-inhibitors, angiotensin converting enzyme (ACE)-inhibitors, antioxidant vitamins, estrogens and L-arginine all improve NO-mediated vasorelaxation. The effect of the HMG CoA-
inhibitor, simvastatin, in stroke and the ACE-inhibitor, ramiprilate, in myocardial infarction was abolished in NOS-III deficient mice indicating the obligatory role of endothelial NO in mediating cardiovascular benefit by these treatments. Experiments with cultured primary human aortic endothelial cells and isolated vessels from atherosclerotic animal models show that these therapies target different molecular mechanisms contributing to the regulation of endothelial NO production.

NOS-III ENZYME

Endothelial NO is produced by the endothelium as a result of the oxidation of L-arginine to L-citrulline by the endothelial isoform of nitric oxide synthase, NOS-III. NOS-III belongs to the family of NOS isoenzymes, which form homodimers, and contain a heme oxygenase domain and a cytochrome P-450 reductase domain. All isoforms require the same cofactors: NADPH, FAD, FMN, tetrahydrobiopterin (BH4), calmodulin and haem (List et al. 1997). NADPH provides the electrons for the oxidation of L-arginine. The electron transfer to the haem is catalyzed by the FAD and FMN containing cytochrome P-450 reductase domain, which requires bound calmodulin for its activity. NOS-I (neuronal isoform) and NOS-III are constitutively expressed, calcium-calmodulin dependent enzymes. NOS-II (inducible isoform) is induced upon cytokine stimulation and does not require additional calcium for activity. Calmodulin is tightly bound to NOS-II in contrast to the constitutive isoforms, probably due to the lack of an autoinhibitory loop on NOS-II (Salerno et al. 1997).

PHYSIOLOGICAL ROLE OF ENDOTHELIAL NO

Under normal physiological conditions NOS-III derived NO, released by receptor activation or shear stress, freely diffuses from the endothelium towards the lumen and the vessel wall. NO plays a key role in the maintenance of vascular homeostasis (Rubanyi 1993) (Figure 1).

NO has been shown to inhibit platelet adhesion and aggregation (Stamler et al. 1989, Cooke et al. 1990) and prevent thrombosis (Shultz and Raij 1992). Platelet aggregation is enhanced by incubation with inhibitors of NOS and antagonized by the NOS substrate L-arginine (Chen and Mehta 1996).

NO is also a potent inhibitor of leukocyte adhesion (Kubes et al. 1991, Gaboury et al. 1993) and transmigration by preventing the redox-sensitive transcription of proinflammatory molecules (VCAM-1, ICAM-1, MCP-1, MCSF, etc.) via the inhibition of NF-kB activation (Peng et al. 1995, Zeiher et al. 1995).

Oxidatively modified LDL (oxLDL) is a major contributor to vascular wall activation during the pathogenesis of atherosclerosis. NO has also been shown to inhibit oxidative modification of LDL (Wang et al. 1994).

NO also attenuates smooth muscle proliferation and inhibits neointima formation (Tarry and Makhoul 1994). On the other hand NO protects endothelial cells from apoptotic stimuli (Dimmeler et al. 1998) and mediates the angiogenic effect of vascular endothelial growth factor (VEGF) (Murohara et al. 1998).

Finally NO is a potent vasodilator, which led to its discovery as EDRF in 1980 (Furchgott and Zawadzki 1980) and later to its identification as NO (Moncada et al. 1991) using bioassay systems allowing the
assessment of its biological half-life (Griffith et al. 1984, Rubanyi et al. 1985). Continuous synthesis of endothelial NO plays an important role in the regulation of normal blood pressure. Administration of NOS inhibitors increases blood pressure in experimental animals, as well as in humans (Moncada et al. 1991).

NOS-III DEFICIENT MOUSE

Proof for the numerous physiological, mostly vasculoprotective role of endothelial NO was provided by the development of the NOS-III deficient (NOS-III-KO) mouse, in which NOS-III expression was genetically disrupted (Huang et al. 1995).

Homozygous NOS-III-KO mice have 30% elevated mean arterial blood pressure, consistent with the role of endothelial NO in the regulation of blood pressure and vascular tone (Huang et al. 1995, Shesely et al. 1996). Isolated aortic rings with intact endothelium from NOS-III-KO mice do not relax to acetylcholine, which provides genetic evidence that the NOS-III gene is required for the EDRF activity. These mice showed markedly decreased bleeding times (Freedman et al. 1999), exhibited enhanced leukocyte adhesion associated with elevated surface expression of P-selectin in the microcirculation (Lefer et al. 1999) and impaired angiogenic response (Lee et al. 1999).

In addition, myocardial ischemia and reperfusion injury was significantly exacerbated in the absence of endothelial cell nitric oxide synthase using NOS-III-KO mice (Jones et al. 1999). NOS-III deficiency also resulted in enlarged cerebral infarcts following permanent middle cerebral artery occlusion (MCAO) (Huang et al. 1996). These results confirmed the protective role of NOS-III in cardiovascular injury.

REGULATION OF ENDOTHELIAL NO AVAILABILITY

NO production by NOS-III is under complex intracellular and extracellular control mechanisms (Figure 2). The different cofactors involved in NO formation provide potential points for regulation of enzyme activity,
besides other transcriptional and posttranscriptional mechanisms. These regulatory pathways may as well involve modulation of substrate availability or the metabolism of enzyme cofactors. As for other important signaling molecules, subcellular localization of NOS-III is under dynamic control by different posttranslational modifications. The fate of NO, once its made, may also be controlled by intracellular and extracellular pathways that importantly influence its biological activity.

Regulation of NOS-III Expression

Regulation at the transcriptional level

The promoter of the NOS-III gene, like that of other constitutively expressed housekeeping genes, does not contain a TATA-like element (Marsden et al. 1993). However, NOS-III expression and endothelial NO production appear to be under tight physiological control. One of its most important physiological regulators is shear stress (Rubanyi et al. 1986, Miller et al. 1986). The presence of AP-1, AP-2, SP-1, NF-1, p53, sterol regulatory elements and half palindromic sequences of estrogen response elements (ERE) in the NOS-III promoter suggests potential regulation of NOS-III expression by several different factors (Venema et al. 1994). Lysophosphatidylcholine (Cieslik et al. 1998), shear stress (Uematsu et al. 1995), transforming growth factor-β (Inoue et al. 1995), protein kinase C (Ohara et al. 1995, Li et al. 1998), phenolic antioxidants (Ramasamy et al. 1999) and estrogens (Kleinert et al. 1998) represent the examples of exogenous stimuli known to modify NOS-III gene transcription.

NOS-III mRNA stability

Post-transcriptional regulation is also an important modulator of the steady-state NOS-III mRNA level under pathophysiological conditions. Tumor necrosis factor-α (TNFα) (Yoshizumi et al. 1993, Marsden et al. 1993).